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Circuito Exterior s/n, Ciudad Universitaria, 04510 México, D.F., México
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The effect of confining a gas bubble between two parallel walls was investigated
for the inertia-dominated regime characterized by high Reynolds and low Weber
numbers. Single bubble experiments were performed with non-polar liquids such that
the bubble surface could be considered clean; hence, shear free. The drag coefficient
was found to be the result of two main effects: the Reynolds number and the
confinement. The total drag could be written as the product of the corresponding
unconfined drag, which depended mainly on the Reynolds number, and a function
F (s) = 1 + κs3. The confinement parameter s was defined as the ratio of the bubble
radius to the gap width. The value of the constant κ depended on the way in which
the bubbles moved within the gap, which was found to be either in a rectilinear
(κ ≈ 8) or oscillatory trajectory (κ ≈ 80). For Re< 70, and a range of values of
the confinement parameter, the bubbles followed a rectilinear path. For this regime,
numerical simulations were performed to obtain the drag force on the bubble directly;
a reasonable agreement was found with experiments. Moreover, a comparison of these
results with a potential-flow-based model indicated that the vorticity produced at the
walls induced a significant part of the drag. For Re > 70, oscillations were observed
in the bubble trajectory. In all cases, the oscillation occurred in a zigzag manner.
Near the transition the bubbles oscillated but did not reach the walls; for larger
Reynolds numbers, the bubbles collided repeatedly with the walls as they ascended.
The instability, which is different from the well-known unconfined path instability,
resulted from the reversal of sign of the wall-induced lift force: for low Reynolds
number, the walls have a stabilizing effect because of the repulsive nature of the lift
force between the walls and the bubble, while for high Reynolds number the lift is
attractive and trajectories become unstable. Considering a model for the lift force
of a bubble moving near a wall, the conditions for the transition were identified. A
reasonable agreement between the model and experiments was found.

1. Introduction
The motion of bubbles rising through a liquid because of buoyancy has been the

subject of numerous studies. This apparently simple phenomenon has shown to be of
enormous complexity, reflected in a variety of different bubble shapes and trajectories
ranging from simple rectilinear trajectories in the case of small spherical bubbles to
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zigzag and helical paths in the case of oblate ellipsoidal bubbles (Clift, Grace & Weber
1978). The interest in understanding bubbly flows is widely justified by numerous
engineering applications and natural phenomena. In most practical situations, bubbly
flows are confined by walls. In particular, for the case of underground multiphase flow
in oil and gas reservoirs, the fluid motion is restricted to very confined geometries in
the interior of fractures or cracks. Paradoxically, most studies have been carried out
for unconfined configurations.

The effect of confinement on the motion of submerged objects has been studied by
many authors in the past. For the case of solid spheres and cylinders, exact analytical
solutions for the case of creeping flow exist. Bairstow, Cave & Lang (1922) solved
the creeping fluid motion around a circular cylinder confined between two parallel
walls, considering a solution of the biharmonic equation. They found that the drag
force was approximately 60 % larger than the unconfined case for Re = 2aUρ/μ = 0.2
and a confinement s = a/W = 0.1, where a is cylinder radius, U , its velocity, W the
distance between walls and ρ and μ the fluid density and viscosity, respectively. Faxen
(1922) calculated the drag force on a sphere moving confined between two parallel
walls. He found that the drag force increases linearly with s. The motion of confined
bubbles in the creeping flow regime can be solved by considering the solution for
spheres and the Hadamard–Rybczynski drag correction (Hadamard 1911; Rybczynski
1911).

For high-Reynolds-number confined flows, there is no analytical expression for the
drag experienced by a bubble moving between two vertical walls. The motion of a
single bubble rising freely through a stationary liquid was studied by Levich (1948,
1962) and Moore (1963). Based on the boundary layer assumptions, Levich considered
that the flow was essentially irrotational and that the drag could be calculated
from the dissipation. In that way, an analytic expression for the drag coefficient,
CD =2F/(ρU 2πa2), of a spherical bubble rising steadily through a quiescent liquid
was found to be CD = 48/Re. Moore (1963) analysed the same problem and showed
that the velocity field to leading order could be considered to be irrotational or
potential everywhere in the liquid, and that the correction to this was O(Re−1/2) in
the boundary layer of thickness O(Re−1/2) near the surface of the bubble. Moore also
showed that the wake behind the bubble was small, of size O(Re−1/4), in contrast to
the flow past a solid sphere for which there is a boundary-layer separation causing
a finite region of recirculation. Moore (1965) extended his first study (Moore 1963)
to ellipsoidal bubbles and showed that the drag coefficient depended strongly on the
bubble aspect ratio, χ = R/r , where R and r are the major and minor semi-axes of
the bubble, respectively. He found that

CDMoore =
48

Re
G(χ)

{
1 +

H (χ)

Re1/2
+ O

(
Re−5/6

)}
, (1.1)

where the function G(χ) is defined as

G(χ) =
1/3χ4/3(χ2 − 1)3/2[(χ2 − 1)1/2 − (2 − χ2) sec−1 χ][

χ2 sec−1 χ − (χ2 − 1)1/2
]2

. (1.2)

The function H (χ) does not have a closed form expression but is shown in table 1 of
Moore (1965).

There are some analytical results for the drag and lift forces acting on a bubble
moving parallel to a single wall. Van Wijngaarden (1976) and Biesheuvel & Van
Wijngaarden (1982) used twin spherical expansions to calculate the velocity potential
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ρ (kg m−3) μ (mPa s) σ (mNm−1) U (cm s−1) a (mm) Re=2aUρ/μ We=2aU2ρ/σ

Fluid 1 761 0.495 16.036 10<U < 23 0.20<a < 0.7 90<Re< 470 0.05<We< 2.68

Fluid 2 818 0.777 15.455 5 <U < 22 0.25<a < 0.7 40<Re< 300 0.05<We< 2.06

Fluid 3 841 1.771 12.455 3 <U < 18 0.15<a < 0.7 30<Re< 100 0.05<We< 1.39

Table 1. Fluid properties for all experiments.

of a pair of bubbles moving through a liquid at high Reynolds number. Using similar
techniques, Kok (1993) calculated drag coefficient, CD , for a pair of bubbles rising
through a liquid, which is equivalent to the calculation of the drag of a bubble in the
presence of a plane of symmetry or a virtual wall. He obtained

CD =
48

Re

(
1 + s3 +

3

4
s6 +

11

3
s8 +

39

4
s10 + · · ·

)
. (1.3)

Here, s = a/W is the ratio between the bubble radius and the distance between bubble
centres W . Kumaran & Koch (1993) performed the same calculation, using a slightly
different method, leading to the same result. As discussed by Faxen (1922), single
wall calculations cannot be simply added to calculate the drag for the two-wall case,
specially for small Reynolds number flows. Moreover, for the potential flow case,
the addition of a second wall breaks the symmetry assumption and, therefore, the
no-penetration condition at the solid wall is not satisfied.

For the case of confined bubbles, it can be argued that the total drag is the result
of two separate effects: the flow around a corresponding freely rising bubble and the
confinement effect. Legendre, Magnaudet & Mougin (2003) showed that for the case
of two bubbles rising side-by-side, these two effects could be simply superposed to
describe the total drag over the bubble. We will show that this superposition is also
valid for the flow configuration studied here.

In this paper, the motion of a single clean slightly oblate bubble of equivalent
radius a, rising through a quiescent liquid of dynamic viscosity μ and density ρ owing
to buoyancy is studied. The bubble, moving at its terminal velocity, U , in the vertical
direction, z, is confined between two parallel vertical walls separated by a distance W ,
as shown in figure 1. The drag coefficient will, therefore, depend on the dimensionless
distance between walls s = a/W , that varies from s = 0 in the unconfined case to
s = 1/2 in the most confined configuration when the walls contact the surface of
the bubble on each side. The study focuses on the case for which inertial effects
are bigger than viscous ones (Re > 1) and surface tension is dominant over inertia
(We = 2aU 2ρ/σ < 1).

This study is mainly experimental. However, we have also used numerical
simulations and analytical solutions to complete our investigation on the nature
of the drag for confined ascending bubbles.

2. Experimental set-up
The experimental set-up is shown in figure 2. A thin channel was built using two

glass sheets of approximately 20 cm width and 40 cm height, separated by a small
gap. To vary the confinement, two nearly identical set-ups were used with gaps of
3.6 and 4.7 mm (measured with an accuracy of ± 0.05 mm). At the bottom of the
channel, bubbles were produced by blowing air through a capillary tube. The liquids
used were silicon oil mixtures of different viscosities to avoid surface contamination.
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Figure 1. Bubble rising confined between two parallel walls.The coordinate system is shown.
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Figure 2. Experimental set-up.

The Reynolds number ranged between 30 and 500, while the Weber number was
in the range of 0.05 � We � 2.7. The verticality of the set-up was monitored with a
digital level with an accuracy of 0.1 degrees. The properties of the liquids used are
shown in table 1.

The shape and motion of the bubbles were captured using a high-speed camera and
digital image processing software. The images were captured at approximately 10 cm
from the capillary tip through the front wall (the y–z plane). The extent of the image
was chosen in such a way as to maximize the relative size of the bubble in the digital
image frame, taking into account the minimum distance that the bubble would travel
before attaining its final velocity. This distance and the characteristic time needed to
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reach it can be estimated from a dynamic equation of motion obtained from a force
balance between the Levich drag and buoyancy, considering the mass of the bubble
to be the virtual mass, and neglecting the history force. The distance traversed by the
bubble before attaining 95 % of the terminal velocity is approximately

L ≈ 4.10gτ 2,

where τ = a2ρ/(18μ). For instance, for the largest bubble and the least viscous fluid
in this investigation (a = 0.7 mm and μ/ρ = 0.65 × 10−6 m2 s−1), L is approximately
70 mm. For smaller bubbles and more viscous fluids, this distance would decrease;
hence, for all the tests in this investigation we can assume that the bubbles have
reached their terminal velocity at the measuring point.

A second ordinary camera was used to measure the mean bubble velocity, by
recording the bubble motion from a wider field of view that covered the length
of the channel. The uncertainty in the measurements was less than 5 %. Once the
distances and focus were calibrated, the rise velocity was measured using sequences
of images. These images were digitally treated and transformed into binary images. A
computer program was developed using the software Matlab to identify the bubble
and measure its shape and velocity. To evaluate the effect of confinement on the
drag coefficient, the terminal velocity U and the major and minor semi-axes, R and
r , of the bubble were measured for different bubble sizes and wall separations. Most
measurements were obtained by filming the motion of the bubbles through the front
wall (in the y–z plane), i.e. the bubble motion across the gap was not recorded. The
bubble equivalent radius, a = (R2r)1/3, varied from 0.15 to 0.7 mm. The bubble aspect
ratio χ = R/r , ranged in between 1.0 and 1.7 for the conditions tested here. Bubble
expansion as a result of its ascension through a pressure gradient can be shown to
have an insignificant effect for this case; this effect was therefore neglected.

A few visualization experiments were performed using the high-speed camera and
a mirror. The objective of this arrangement was to visualize the bubble motion both
within the gap and across the width simultaneously (both x–z and y–z planes).
Since in our set-up the width is approximately 50 times larger than the gap, the
optical arrangement to obtain these images posed some challenges, resulting in poor
spacial resolution. Although the images clearly show the nature of the motion for the
different regimes, as will be shown below, they were not used to obtain quantitative
measurements.

The drag coefficient was inferred from a steady vertical force balance between
buoyancy and drag,

CD =
8

3

rg

U 2
. (2.1)

As will be explained later, the drag coefficient was normalized with the
corresponding drag coefficient of a freely rising ellipsoidal bubble of aspect ratio,
χ , (Moore 1965):

C∗
D =

CD

CDMoore

, (2.2)

where CDMoore is defined in (1.2). By normalizing the drag coefficient in this
way the effect of the confinement and that of the bubble shape are separated.
Zenit & Magnaudet (2008) showed that Moore’s expressions remain relatively accurate
for Reynolds numbers as small as 50.
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Figure 3. The drag coefficient as a function of Reynolds number for an unconfined bubble.
Experimental measurements correspond to fluid 3 in table 1. The dashed line shows the
prediction considering a clean ellipsoidal bubble (Moore 1965) for the corresponding physical
properties of the liquid.

To corroborate that the gas–liquid interface of the silicon fluid was clean, the
terminal velocity was measured for bubbles of different sizes in a large cylindrical
container with a diameter of 10 cm. The experimental results are shown in figure 3.
The measured drag coefficient is shown as a function of Reynolds number for the
third fluid (see table 1). The experimental measurements are compared with the
prediction of Moore (1965), which considers a clean ellipsoidal bubble. Clearly,
the agreement between the experimental measurements and the model by Moore
shows that the bubbles are moving as fast as the shear-free interface prediction. Note
that, in fact, the drag coefficient measured is smaller than the theoretical prediction;
in other words, the bubbles ascend faster than the prediction. This fact was also
observed by Duineveld (1995) for the case of gas bubbles in hyper-clean water and by
Zenit & Magnaudet (2008) for air bubbles ascending in silicon oils. The slightly larger
velocities observed experimentally are probably the result of bubble shape, which is
not exactly ellipsoidal in the experiments as assumed in the calculation of Moore.

The flow around clean bubbles, which is studied here, is amenable to potential
flow theory treatment, as in Levich (1962). An analytical solution of the flow about
a spherical bubble confined between two planes was obtained. Its development is
shown in the Appendix. This solution will be compared with both experimental and
numerical results in § 3.

In addition, to complement the experimental study presented here, direct numerical
simulations of the flow around clean spherical bubbles were performed using the
numerical code JADIM. This code has been extensively validated for several fluid
dynamics problems in the past. Of particular relevance to the present context, we can
refer to the study of a bubble in a simple linear shear flow (Legendre & Magnaudet
1998), the interaction of two bubbles (Legendre et al. 2003), and the effect of the
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Figure 4. The normalized drag coefficient as a function of the confinement parameter. The
solid and empty symbols show the experiments for which the trajectory of the bubble was
found to be rectilinear and oscillatory, respectively. The empty circles show the experiments
for which slight oscillations were observed (slightly above the threshold).

bubble deformation on the drag of a bubble (Legendre 2007). The code solves the
full Navier–Stokes equations for a fluid with constant viscosity and density.

3. Experimental results: two types of bubble motion
Using the simple experimental set-up described above, many experiments were

conducted to measure the terminal velocity of bubbles of different sizes considering
the three different liquids listed in table 1. As the size of the bubble and the gap
varied, the value of the confinement parameter, s = a/W , was changed.

The results of all the experiments conducted are shown in figure 4. The data are
presented in terms of the confinement parameter, s = a/W , as a function of the
Reynolds number. The movement of the bubbles in the channel was found to be
strongly dependent on these two parameters. Two distinct behaviours were found.
Bubbles ascended in a rectilinear manner, positioned in the centre of the channel for
Reynolds numbers up to Re ≈ 70. Above this critical value of the Reynolds number
and for certain values of the confinement parameter, the bubble trajectories become
oscillatory. For Reynolds numbers in between 70 and 100, that is at the onset of
transition, only slight oscillations were observed: the bubbles moved back and forth
within the gap without touching the walls. For larger Reynolds number, the bubbles
bounced against the walls during their ascension. In the figure, the data are separated
into rectilinear and oscillating trajectories.

Figure 5 shows typical photographs of the two behaviours. To observe the bubbles
from the front and side simultaneously, these images were captured by the high-speed
camera and a mirror. Figure 5(a) shows a superposition of images of the same bubble
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(a) (b) (c)

Figure 5. Bubble ascending in the confined channel. The motion is viewed from both sides at
once (narrow and wide dimensions, on the left and right, respectively). The bubble is shown at
different time instants (Δt = 4 ms) in the same plate: (a) Straight trajectory, Re ≈ 60, s ≈ 0.13,
(b) slight zigzag trajectory, Re ≈ 100, s ≈ 0.13 and (c) zigzag trajectory, Re ≈ 300, s ≈ 0.13. The
vertical dashed lines show the approximate position of the walls. In all cases shown, a ≈ 0.65 mm
and W = 4.7 mm. The aspect ratio varies approximately from 1.2 to 1.6, from case (a) to (c).

at different time instants showing that the bubble rises straight in the centre of the
channel, which corresponds to a small Reynolds number case. Figure 5(b) shows a
bubble rising at a Reynolds number slightly larger than the transition value. From
the two perpendicular views, it can be seen that the oscillation takes place only in one
direction, i.e. in a zigzag path within the gap (viewed from the front of the channel).
The magnitude of the oscillation remains small. Figure 5(c) shows the trajectory of
an oscillating bubble for a larger Reynolds number. In this case, the bubble moves
and collides against the walls. During the collision a strong reduction of the velocity
is observed, which results in larger fluctuations and a smaller mean.

Interestingly, the transition to an oscillatory trajectory occurs at a Reynolds number
which is much smaller than a freely rising isolated bubble (about 660 for pure
water (Duineveld 1995) and from 100 to 400 for silicon oils of decreasing viscosity
(Zenit & Magnaudet 2008)), and also at a smaller aspect ratio (about 2.0 for water
and silicon oils (Zenit & Magnaudet 2008)). For the case of isolated bubbles the
oscillatory trajectory is the result of the instability of the wake, which is directly
linked to the amount of vorticity produced on the bubble surface. As will be shown
later, the source of the instability of the trajectory is completely different in this case.
To present the results clearly, we have opted to separate them into rectilinear and
oscillating trajectories.

4. Bubbles moving in a rectilinear trajectory
The experimentally determined drag for bubbles ascending in a rectilinear trajectory

is presented in figure 6. The vertical axis represents the normalized drag, CD/CDMoore ,
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Figure 6. Normalized drag coefficient as a function of the confinement parameter. The plus
signs (with error bars) show the experimental results. The solid triangles show the simulation
results. The solid and dashed lines show the analytical results of (4.1) and (4.2), respectively.
The dashed–dotted line shows the fit of the simulation results given in relation (4.3).

and the horizontal axis corresponds to the dimensionless distance between walls, s.
The experimental data correspond to a range of Reynolds numbers between 30 and
70 approximately. For these experiments, the bubble remains at the centre of the
channel. As s increases from s = 0 (unconfined case, where the normalized drag tends
to unity) to s = 1/2 (the most confined configuration), the drag increases monotonically
reaching nearly two times the unconfined drag.

We can now compare the experimental results with the analytical expression for
the confined drag obtained from potential flow theory. This calculation is described
in detail in the Appendix. It considers the motion of a spherical bubble confined by
two virtual walls. The normalized drag from this calculation is (A 30)

CD

CDLevich

= 1 + 2s3 +
17

8
s6 + O(s8) + · · · . (4.1)

Note that in this case the drag coefficient was normalized by CDLevich which is
the corresponding unbounded situation for χ = 1. The prediction of this expression
is also shown in figure 6 along with the experimental data. Clearly, for values of
the confinement parameter greater than 0.15, the analytic prediction significantly
underestimates the value of the drag. This is, however, expected because the calculation
of the drag does not account for the non-slip condition on the walls. If the infinite
series of dipoles is considered, the normalized drag is (A 35)

CD

CDLevich

= 1 + 2ζ (3)s3 + · · · = 1 + 2.3s3 + · · · , (4.2)

where ζ is the Riemann–Zeta function. This solution is also far from the experimental
measurements when the value of the confinement is significant. As will be discussed
later, the vorticity produced at the wall cannot be neglected; this is the reason why
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the potential flow underestimates the drag. Vorticity has a key role on the dissipation,
and hence on the drag (Legendre 2007).

To explore further the nature of the drag increase resulting from confinement, we
complemented our experimental investigation with numerical simulations of the same
flow. The details of the simulation code can be found in Legendre et al. (2003) and
are left out for brevity. The flow of a static spherical bubble placed in between two
moving walls is considered. The drag force on the surface of the bubble was measured
directly by integrating the total stress on the surface of the bubble. Simulations to
evaluate the effect of confinement were obtained by varying the value of s in the range
0.05 <s < 0.38. These results are compared with experiments and the potential flow
solution in figure 6. The normalized drag from the numerical simulations is calculated
as CD/CDs→0. Despite the scattering of the experimental results, it can be observed
that the simulation results are in reasonable agreement with the experiments. For most
experiments the drag coefficient is slightly larger than the numerical results. Note that
for the range 0.1 <s < 0.2 some values of the normalized drag are smaller than one;
these are clearly indicative of experimental uncertainty since the normalized drag for
an unconfined bubble should be unity. The analysis of the numerical results shows
that the drag dependency is also proportional to s3. The drag obtained numerically
can be closely fitted to

CD

CDs→0

= 1 + 8s3 + O(s4). (4.3)

Note that the s3 dependency was also obtained from the potential flow solution; the
expression fitted to the numerical results indicates that the viscous effect is four times
the potential prediction. In the next section, we analyse the increase of drag with
confinement considering the value of the maximum vorticity produced on the walls.

4.1. The relation between vorticity production and the drag

Recently, Legendre (2007) argued that the drag force for Stokes flows can be expressed
as a function of the maximum vorticity Ωmax as

D = −4πμa2Ωmax. (4.4)

Legendre also extended this relationship to the case of large Reynolds numbers,
observing that a substitution of the maximum vorticity Ωmax = 3U/a into the Levich
drag, D = −12πμaU , gives the same result as in the above equation. Legendre
performed numerical simulations to verify that this holds true for intermediate values
of the Reynolds number up to 500. The drag force (4.4) in dimensionless terms, that
is the drag coefficient, can be obtained as a function of the maximum vorticity

CD =
16

Re

a

U
Ωmax. (4.5)

Let us consider a global momentum balance for a steady confined bubble flow

Δρg
πd3

6
= −FD +

∫
wall

τxy dS, (4.6)

where τxy is the shear stress on the wall. Note that τxy can also be expressed as a
function of the wall vorticity Ωwall, τxy = μΩwall. The left-hand side of (4.6) is in fact
the drag force of an unconfined bubble, FD∞ =−Δρgπd3/6. Therefore, we can write

FD = FD∞ +

∫
wall

μΩwall dS (4.7)
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Figure 7. Maximum normalized vorticity Ω∗
max as a function of the confinement s for different

values of the Reynolds number. The solid and empty symbols show the bubble and wall
maximum vorticity, respectively.

showing that the drag is additive and its increase is proportional to the vorticity
produced on the wall.

To estimate the contribution of the wall vorticity for different values of the
confinement, s, the maximum normalized vorticity Ω∗

max = Ωmaxa/U was calculated
from the numerical simulation results. Figure 7 shows a comparison between the
maximum vorticity measured at the bubble surface and at the wall. It can be
observed that the increase in the maximum vorticity in the surface of the bubble
is not substantial compared to that of the wall. More importantly, by plotting
the data in a log–log scale, it can be shown that the wall vorticity also increases
proportionally to s3.

Since the vorticity produced on the walls is known, an estimation of the drag
increase can be obtained. In fact, the drag predicted from potential flow theory can
be corrected, adding this effect. However, before attempting that, it must be noted
that the bubbles in the experiment are not very oblate (aspect ratio slightly larger
than unity, χ < 1.1, for rectilinear trajectories). Based on the results of Legendre
(2007), we can argue that for such small values of χ , the effect of the bubble shape
is not very significant in the total confined drag.

4.2. An estimation of the confined drag

To estimate the drag on a confined bubble, we consider an additive contribution of
the potential flow estimation with the drag resulting from the vorticity generated at
the wall. This assumption is appropriate in view of the argument leading to (4.7).
Therefore, we can write

CD

CDMoore

= 1 + 2s3 +
16Ω∗

max

Re
, (4.8)

where Ω∗
max = Ωmaxa/U . From the experiments, Re and χ can be obtained and

therefore the confined can be estimated.



430 B. Figueroa-Espinoza, R. Zenit and D. Legendre

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.8

1.0

1.2

1.4

1.6

1.8

2.0

s

C
D

/C
D

 M
oo

re

Figure 8. Normalized drag coefficient as a function of the confinement parameter, s. The
symbols are the same as in figure 6. The additional symbols, solid squares, are the estimates
of the drag considering (4.8).

This estimate is plotted in figure 8 where the experimental and numerical results
are also presented. The agreement is good without any additional parameter fitting.
Clearly, since the comparison is good, the value of the contribution of the term
(16Ω∗

max)/Re is approximately 6s3. Hence,

Ω∗
max ≈ 3

8
s3Re. (4.9)

The functional dependence is correct considering that the maximum wall vorticity
does increase as s3, as shown in figure 7.

5. Bubbles moving in an oscillating trajectory
As already mentioned in § 1, when a single air bubble rises through a liquid driven

by buoyancy, its trajectory can either be rectilinear or oscillating, depending on the
values of the relevant parameters (Clift et al. 1978). The transition from rectilinear to
oscillating trajectory has been studied by many researchers (see Veldhuis 2007 for a
recent account). It has been reported that for air bubbles in ultrapure water, the onset
of this transition occurs at Reynolds number of approximately 660, Weber number
of approximately 3, and aspect ratio of 2.0 (Duineveld 1995). Nevertheless, small
amounts of surface contamination can dramatically lower this threshold to Reynolds
numbers of approximately 200. Recently, Zenit & Magnaudet (2008) showed that for
other clean liquids, the transition to oscillatory trajectories did not only depend on
the Reynolds number, but also on the bubble aspect ratio. It has been demonstrated
that the reason for this phenomenon is the instability of the vorticity structure in
the wake behind the bubble (Magnaudet & Mougin 2007; Yang & Prosperetti 2007),
which in turn generates a horizontal force (lift) that causes the sideways motion of
the bubble (Shew, Poncet & Pinton 2006).
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De Vries (2001) and more recently Veldhuis (2007) analysed the wake structure
of oscillating bubbles through Schlieren images of wake structures for straight and
zigzagging bubbles. The wake of the latter presented two long thin counter-rotating
vortices, which had also been described by the numerical simulations of Mougin &
Magnaudet (2002). The mechanisms that make a bubble deviate from a rectilinear
trajectory can be summarized as follows: the double-threaded vortex structure that
appears behind the bubble produces a lift force. As the angle between the path and
vertical grows, the driving force (buoyancy) decreases and so does the velocity. At
lower speeds the bubble cannot maintain the wake production, so the path curvature
decreases and the wake dissipates. Since the lift vanishes under these conditions, the
bubble starts accelerating due to buoyancy and the cycle starts again with a vorticity
sign reversal. This would anticipate a somewhat intermittent wake structure when
path instability occurs. Direct observations of the wake structures by Brücker (1999)
support this hypothesis.

For the case of confined bubbles the onset of oscillations has not been studied
to date. We observe that bubbles begin to deviate from a rectilinear trajectory for
certain values of the Reynolds number and the confinement parameter. The onset
occurs at Reynolds numbers and aspect ratios much lower than those corresponding
to unconfined path instability. The trajectories were in a zigzag manner, not spiral, for
Reynolds number of approximately 70. For higher Reynolds numbers, the bubbles
were attracted towards the walls and in some cases bounced back and forth from one
wall to the other.

5.1. The drag for bubbles with path oscillations

In the same channel, experiments were performed with bubbles in which path
oscillations were observed. The drag was measured using the mean vertical rise
velocity Ū , using (2.1). Figure 9 shows the evolution of vertical rise velocity with
position and the bubble trajectory. The two cases shown correspond to the images
shown in figure 5 for the oscillating trajectories. In case (a), corresponding to the
slight oscillation case, the amplitude of oscillation is small compared to the channel
width; the bubble does not reach either wall and the velocity does not change
significantly. Since the bubble is ascending near the transition from wall-repulsion
to wall-attraction, it is possible that the sign of the lift force changes as the bubble
translates within the gap, causing oscillations that do not result in wall collisions.
However, for case (b), the bubble moves across the whole gap experiencing cycles
of acceleration and deceleration while ascending. The fluctuations are of significant
magnitude. These arise because of the horizontal motion of the bubble and the
collisions of the bubble with the walls. In the figure, a collision can be observed
at z/W ≈ 0.70; the vertical velocity decreases significantly during the contact with
the wall reaching a value of 0.75U . The significant decrease of velocity during the
approach–contact–rebound process was discussed by Moctezuma, Lima-Ochoterena
& Zenit (2005) and earlier by De Vries (2001). As a result of each collision, the bubble
velocity changes significantly leading to an increased level of fluctuations which in
turn causes an increase of the mean drag. As a result of the collision of a bubble with
a vertical wall, it is possible to have a normal restitution coefficient larger than unity
(Sato et al. 2007) for certain conditions (resulting from a transfer from the vertical
momentum to the horizontal momemtum). In other words, the rebound velocity
would be larger than the approach velocity in the normal direction. Therefore, due
to this interaction, it is possible for a bubble to travel from one wall to the other and
collide successively with both walls while ascending.
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Figure 9. Trajectories and vertical velocities of two oscillating bubbles ascending in the
confined channel. The plus signs show the x–z position of the bubble, normalized by the
channel width, W ; the dashed line shows a fit of the bubble position; the thick solid line
shows the difference between the instantaneous velocity and the mean vertical rise velocity,
normalized by U : (a) slight zigzag trajectory, Re ≈ 100, s ≈ 0.13 and (b) zigzag trajectory,
Re ≈ 300, s ≈ 0.13. Cases (a) and (b) correspond to images (b) and (c) of figure 5.

The effect of the oscillations on the drag is illustrated in figure 10, where the
normalized drag coefficient C∗

D is plotted for different values of s. Measurements for
non-oscillating bubbles (already shown in figure 6) are also shown for comparison.
The drag is much larger for the oscillating case, reaching almost three times the
corresponding value for the same s. The dispersion of the data is also higher in the
oscillating case due to enhanced velocity fluctuations. The oscillating phenomenon
restricts the possibility of comparing the experimental results with those obtained
numerically or theoretically.

Interestingly, the normalized drag for oscillating bubbles can be approximately
fitted to

CD

CDMoore

≈ 1 + 80 s3. (5.1)



The effect of confinement on the motion of a single clean bubble 433

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

s

C
D

/C
D

 M
oo

re

Figure 10. Normalized drag as a function of s for bouncing bubbles. The asterisks show the
experiments for which the trajectory was found to be oscillating. The dashed line is a best fit
for all the experiments, (5.1). The experiments for which rectilinear trajectories were observed
are also shown for comparison.

Although the bubbles undergo collisions and consecutive cycles of deceleration and
acceleration, the functional dependence of s3 is retained.

We can now attempt to estimate the confined drag for oscillating bubbles,
considering the results obtained for rectilinear bubbles. For that case we found
that C∗

D ≈ 1+8s3. The number 8 in front of s3 can be thought as the half contribution
from each wall:

C∗
D ≈ 1 +

1

2

k3

y3
1

+
1

2

k3

y3
2

= 1 +
1

2
k3

(
1

|y1|3 +
1

|y2|3

)
, (5.2)

where y is the horizontal distance within the channel, such that y1 + y2 = W for
s = a/W . We can consider a simplified case in which the bubble is no longer in the
centre of the channel, but moves vertically with a sinusoidal horizontal motion

y2 =
W

2
− W − a

2
cos(ωz), (5.3)

where z is the vertical coordinate. An average drag coefficient can be calculated for
a bubble undergoing one quasi-static oscillation cycle:

〈C∗
D〉 =

1

L

∫ L

0

C∗
D dz (5.4)

with ωL = 2π. Therefore,

〈C∗
D〉 = 1 +

8s3

2π

∫ 2π

0

dz′

|1 − (1 − 2s) cos(z′)|3 = 1 + 8s3I (s), (5.5)



434 B. Figueroa-Espinoza, R. Zenit and D. Legendre

where the function I (s) can be integrated numerically for different values of s.
Considering the limit s → 0, I (0) = 5/2 + O(s) which implies that

〈C∗
D〉 ∼ 1 + 20s3. (5.6)

For increasing values of s the function I (s) decreases, which would lead to a smaller

coefficient in front of s3. The model correctly predicts the dependence of CD which is
an indication that such a dependence is a result of the motion of the bubble within
the channel gap. However, a more accurate prediction is not possible with this simple
model. Although it accounts for the motion of the bubble within the gap, it does not
account for the deceleration–acceleration process that the bubble experiences when a
collision with the wall occurs. To include the effect of this process is not simple and it
will not be attempted here. It is clear, however, that a significant part of the increased
drag on oscillating bubbles arises because bubbles are colliding with the walls.

Based on these results, it can be argued that the drag increase is a result of three
main mechanisms: increased bouncing (coefficient of restitution greater than 1) due to
a transfer of vertical to horizontal (Sato et al. 2007); additional vorticity produced and
shed during each wall-interaction event (De Vries 2001) and the additional dissipation
in the film formed in between bubble and wall during the interaction. We argue that
all these mechanisms can be related to the increased value of the drag measured for
the case of zigzagging confined bubbles.

6. Wall instability
It was observed experimentally that the presence of the walls induced the zigzagging

motion at smaller values of the Reynolds number and deformation than expected
from the point of view of the well-known unconfined path instability. This fact can
be explained in terms of the lift on the bubble caused by the walls. The presence
of a wall near a rising bubble has already been analysed by several authors. In
particular, Takemura & Magnaudet (2003) compiled several previous studies with
their own measurements and composed an expression for the lift force based on
experimental, theoretical and numerical grounds (taking into account both the low
and high Reynolds number limit cases and the dynamic effects of vorticity). The
resulting lift is dependent on the distance to the wall and the Reynolds number. More
importantly, the sign of the lift force was found to change from being wall-repulsive to
wall-attractive as the Reynolds number increased. This dependency can be explained
as follows: for low Reynolds numbers, viscous forces are dominant over inertial ones,
and the resulting lift force between bubble and wall is repulsive (Happel & Brenner
1991), while for high Reynolds numbers the dominant forces are inertial in nature,
and the resulting lift force is attractive (Van Wijngaarden 1976). Legendre et al. (2003)
studied the interaction between two horizontally aligned bubbles where the same type
of reversal of the lift force was observed.

To understand the transition from rectilinear to zigzagging trajectories in our case,
let us now consider a bubble rising between two vertical walls at low Reynolds
number: if its trajectory deviates from the centreline between the walls, the repulsive
forces from both walls would tend to repel the bubble back to the centreline. This
stabilizing effect makes it reasonable to expect that the confined rectilinear trajectory
would be stable for low Reynolds numbers. On the contrary, if the bubble rises at high
Reynolds number between the walls, the lift is attractive. If a small perturbation is
imposed, the bubble will move slightly from the centreline and the attraction towards
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Figure 11. Regions of stability in the Re–s plane. The symbols show all the experiments
performed in this investigation: •, 30 <Re < 70; ◦, 70 <Re < 100; �, 100 <Re< 200 and �,
200 < Re< 500. The vertical lines show the approximate value of the Reynolds number for
Fluid 1 (dashed line) and Fluid 3 (dashed dotted line). The solid curve shows the calculation
of zero lift force superposing the effect of two walls, considering the expression proposed by
Takemura & Magnaudet (2003). The dashed region show the region of stability (wall-repulsive
region).

the walls will tend to drift the bubble farther away from the centreline, having as
a result a destabilizing effect. Near the transition, the nature of the horizontal force
may change (attractive or repulsive) as the bubble moves within the channel, resulting
in slight oscillations.

To test this hypothesis, a plot of s as a function of Reynolds number was composed.
Figure 11 shows regions of stability for different cases: the onset of unconfined path
instability for the case of fluids 1 and 3 (from table 1) are located at Re ≈ 470 and
Re ≈ 210, according to Zenit & Magnaudet (2008). In the figure, the experiments
shown as empty circles showed slight oscillations, and we considered them to be
at the onset of the transition. The solid circles show experiments for which only
rectilinear paths were observed.

To estimate the zero-lift contour in the Re–s plane, we considered the following:
the expression proposed by Takemura & Magnaudet (2003, equation (6a)) was used
to superpose the lift experienced by a bubble located at a position slightly eccentrical
(say, W/2 + ε from one wall and W/2 − ε from the other one). The corresponding
lift forces were added, resulting in a total lift force that could be directed either
to the centre or against the walls. If the superposed lift is directed to the centre,
then the bubble trajectory is stable for those specific values of the Reynolds number
and s. The region in the s–Re plane where a sign reversal occurs for this ‘two-wall’
lift corresponds then to the zero lift contour. We verified that the shape of the
contour did not change appreciably for values of ε/s in between 0.001 and 0.3. This
contour is presented in figure 11 as a solid line. To the right (respectively left) of this
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line, the centre position of the bubble is unstable (respectively stable). Although the
superposition of the lift of two walls is not exact, the resulting contour is in close
agreement with our experimental observations. The superposition can be justified for
large Reynolds number, where the interactions are not of long range as is the case
for viscous flows. Note that above a certain value of the confinement (between s = 0.4
and s = 0.45), all bubbles are predicted to be unstable; however, the precision of the
superposed contour cannot be expected to be good at high confinements.

7. Summary and conclusions
The effect of confinement on the drag coefficient of ascending clean bubbles was

studied. Our experimental results showed that the dimensionless drag force depended
on two different parameters: the Reynolds number and the dimensionless distance,
s = a/W . An expression for the drag coefficient was obtained as the product of the
unconfined drag, which depended on the Reynolds number, and a function F (s).
For small values of the Reynolds number (Re < 70), it was found that the function
F (s) ≈ 1 + 8s3. This dependence coincided with the fact that bubbles ascended in
a rectilinear manner. In this regime, the induced lift force is wall-repulsive which
maintains the bubble in a stable position in the centre of the gap. Furthermore, for
this low Reynolds number case, the function F (s) was found to be the result of viscous
and inviscid contributions. The inviscid contribution was obtained by calculating the
drag on a sphere in between two virtual vertical walls in a potential flow formulation.
The viscous contribution was inferred from the wall vorticity, obtained from direct
numerical simulations of the flow. For Reynolds numbers larger than 70 and some
values of s, the trajectory of the bubble was found to occur in a zigzag manner,
evolving from slight to strong oscillations as the Reynolds number increased. For
70 <Re < 100, the bubbles moved within the channel gap without touching the wall.
For larger Reynolds number, the bubbles were observed to undergo repeated collisions
as they ascended. The collisions were characterized by periods of strong deceleration–
acceleration, which resulted in large values of fluctuations and a smaller mean velocity.
The unstable trajectory was found to result from the wall-attractive nature of the
induced lift on the bubble. Surprisingly, the drag coefficient was found to preserve the
same functional dependence on s. For this case, F (s) ≈ 1 + 80s3. Clearly, the larger
value of the factor in front of s3 indicates an increased drag as the confinement
becomes larger when the bubbles oscillate. In this regime, a significant part of the
drag is a result of the bubble collisions with the confining walls.

Considering the expression of the wall-induced lift on a bubble by a single wall
from Takemura & Magnaudet (2003), a model was composed to calculate the two-
wall lift. The conditions for the transition between wall-repulsive to wall-attractive
were calculated and compared with the experimental results. The comparison was
remarkable despite the effect of each wall being simply added.

The path instability observed in this study is different from that observed in freely
rising bubbles. The difference lies in the fact that in the confined case there is a strong
wall influence. The oscillations have a strong effect on the drag, causing it to increase
considerably. It would be interesting to investigate the confinement effects on bubbles
which oscillate if unconfined. For such a case, a complex interaction between wake-
and wall-induced forces can be envisioned. This study will be undertaken in the future.
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Appendix. Potential flow calculation of the drag on a bubble confined between
two vertical walls

With the assumptions of Re  1, We< 1 a potential flow formulation for the
external velocity field around the bubble can be considered. If the potential function
is known analytically, then it is possible to calculate a first-order approximation of
the drag (Levich 1948). In principle, it is straightforward to obtain such a solution;
however, the geometry poses some algebraic challenges. The symmetry of the problem
will allow us to obtain an approximation from the equivalent geometry of a set of
aligned spheres, separated by a regular distance R. The symmetry planes located at
the middle of each pair of spheres are equivalent to the confining plane walls.

The technique employed for the solution of Laplace’s equation is the same as that
used by Kumaran & Koch (1993) where the velocity potential is initially set as an
infinite series expansion of spherical harmonics. The coefficients of the series are then
obtained by imposing the boundary conditions.

To construct this approximation, a sphere of radius a is placed at the origin, with
two image spheres aligned along a common axis crossing through their centres. This
arrangement produces a potential function equivalent to that of a sphere confined
between two planes; note that the apparent planes of symmetry between the spheres
(see figure 12) are not proper planes of symmetry. Proper planes of symmetry could be
found if an infinite arrangement of spheres aligned along the same axis is considered.
This case is discussed below (§ A. 2).

A. 1. Three spheres aligned perpendicular to the flow

Let us first obtain the potential for three aligned spheres. Consider an arrangement of
three spheres of radius a, aligned along the fixed axis z, the origin being at the centre
of the second sphere, as shown in figure 12. The radial and azimuthal coordinates are
θi and ri , corresponding to a coordinate system placed at the centre of the sphere i.
The three systems share the same meridional angle μ.

The velocities of the three spheres are the same, as are their radii. The bubble
velocity is parallel to the x axis, represented by the vector U = U ex .

Let us assume a solution of the form

φ = Ua

∞∑
n=1

{
B1

n

(
a

r1

)n+1

P 1
n (cos θ1) + B2

n

(
a

r2

)n+1

P 1
n (cos θ2)

+ B3
n

(
a

r3

)n+1

P 1
n (cos θ3)

}
cosω, (A 1)

where r1, r2, r3, θ1, θ2, θ3 are the three bubble radii and polar angles, according to
figure 12.

Since the velocity decreases to zero at large distances from the bubbles, only the
decaying harmonics are retained and the potential is expressed as a function of the
bubble separation and velocities. The constants B1

n , B2
n and B3

n will be obtained by
substitution in the no-penetration boundary condition

∂φ

∂ri

|ri=a = U sin θi, (A 2)
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Figure 12. Bubble with two images and corresponding spherical coordinates.

where the projection of the bubble velocity on the normal vector of the surface has
been calculated using the radial velocity in spherical coordinates, and the subscript i

represents the surface of the bubble i, for the values i = 1, 2, 3.
This velocity potential is defined in terms of three different sets of coordinate

systems (ri, θi, ω; i = 1, 2, 3). Depending on the boundary conditions to be satisfied
at the surface of each bubble i, it is necessary to express the potential as a function
of the corresponding set of variables (centred at the origin i). To do this, the series
expansion derived by Hobson (1931) can be used:(

1

ri

)n+1

P m
n (cos θi) =

(
1

R

)n+1 ∞∑
q=m

(
n + q

q + m

)(
rj

R

)q

P m
q (cos θj ), (A 3)

which is valid for any angles i, j opposite to each other, as is the case for the angles
θ1 and θ2 in figure 12, for rj < R. For angles with the same orientation (θ1 and θ3),
an equivalent expression must be obtained as follows: consider the angle θ4 = π − θ1.
Since this angle is opposite to θ3, (A 3) can be used:(

1

r1

)n+1

P m
n (cos θ4) =

(
1

R

)n+1 ∞∑
q=m

(
n + q

q + m

)(
r3

R

)q

P m
q (cos θ3), (A 4)

where

cos θ1 = − cos θ4, (A 5)

since θ1 and θ4 are supplementary angles.
Now, introducing the parity property (Arfken 1995)

P m
q (cos θ) = (−1)(m+q)P m

q (− cos θ) (A 6)

and replacing (A 5) and (A 6) in the left-hand side of (A 4), we have(
1

r1

)n+1

P m
n (cos θ1) =

(
1

R

)n+1 ∞∑
q=m

(
n + q

q + m

)(
r3

R

)q

(−1)n+1P m
q (cos θ3). (A 7)

For the case of r3, θ3 as a function of r1, θ1 it can be shown, using the same
procedure, that the factor introduced is (−1)q+1.
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Substitution of (A 1) and (A 3) into (A 2), for i = 1, 2, 3 leads to

Ua

∞∑
n=1

{
−B1

n(n + 1) +

∞∑
q=1

(
B2

q + (−1)(n+1)B3
q

)(n + q

n + 1

)
q

(
a

R

)n+q+1
}

Y 1
n (θ, ω)

= Uδ1nY
1
n (θ, ω), (A 8)

Ua

∞∑
n=1

{
−B2

n(n + 1) +

∞∑
q=1

(
B1

q +
B3

q

2n+q+1

)(
n + q

n + 1

)
q

(
a

R

)n+q+1
}
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n (θ, ω)

= Uδ1nY
1
n (θ, ω), (A 9)

Ua

∞∑
n=1

{
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(
(−1)q+1B1

q +
B2

q

2n+q+1

)(
n + q

n + 1

)
q

(
a

R

)n+q+1
}

× Y 1
n (θ, ω) = Uδ1nY

1
n (θ, ω), (A 10)

where s is the ratio a/R, a is the bubble radius, R is the distance between the centres
of the spheres and Y 1

n (θ, ω) = P 1
n (cos θ1) cosω (repeated indexes do not sum).

The double sums in n and q allow us to interchange indexes, such that each side
of every equation can be expressed as a function of harmonics of the same order and
degree, and the following equations could be derived:

−B1
n +

∞∑
q=1

(
B2

q + (−1)(n+1)B3
q

) n

n + 1

(
n + q
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)
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δ1n

2
, (A 11)

−B2
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∞∑
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q +
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q

2n+q+1

)
n
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(
n + q
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δ1n

2
, (A 12)

−B3
n +

∞∑
q=1

(
(−1)(q+1)B1

q +
B2

q

2n+q+1

)
n

n + 1

(
n + q

n + 1

)
sn+q+1 =

δ1n

2
. (A 13)

Now, for each value n, the set of linear equations (A 11)–(A 13) establishes the
conditions that must be satisfied by the constants B1,2,3

1,2,3... to give a solution that is
consistent with the Laplace’s equation and the boundary conditions given by (A 2).
An approximate solution of (n × q) equations with (n × q) unknowns can be reached
if the sums for n and q are truncated, starting from the value 1 to some positive real
integers n and q, respectively.

The first approximation for the potential function of O(s3) requires n= 1, q = 1.
Therefore,

−B1
1 +

(
B2

1 + B3
1

)1

2
s3 =

1

2
, (A 14)

−B2
1 +

(
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1 +
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1

23

)
1

2
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2
, (A 15)

−B3
1 +

(
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1

23

)
1

2
s3 =

1

2
. (A 16)

Then, the values of B1,2,3
1 can be readily obtained as follows:

B1
1 = −1

2

(s3 − 16)

(8s6 + s3 − 16)
+ 8

s3

(8s6 + s3 − 16)
, (A 17)
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B2
1 = 4

s3

(8s6 + s3 − 16)
− 32

(−4 + s6)

(−256 + 129s6 + 8s9)
+ 8

s3(1 + 4s3)

(−256 + 129s6 + 8s9)
, (A 18)

B3
1 = B2

1 . (A 19)

The constants B
j
i are dependent on the a/R ratio, in a rather complicated manner,

as can be seen from this first approximation. Equations (A 17)–(A 19) will be used in
Appendix A. 2 to obtain the first-order terms for the drag coefficient. The constants,
expressed as series of s, are

B1
1 = −1

2
− 1

2
s3 − 9

32
s6 + O(s9), (A 20)

B2
1 = −1

2
− 9

32
s3 − 137

512
s6 + O(s9), (A 21)

B3
1 = B2

1 . (A 22)

A. 2. The drag as an infinite series of O(sn)

Now, since the potential is known, a first-order approximation to the drag can be
obtained. Note that in (A 1), each of the lateral potentials must be evaluated in terms
of the radius r1 (and angle θ1) to apply the boundary conditions in (A 2). For that
purpose the relation (A 3) is used to obtain

φ = Ua

∞∑
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}
cos ω. (A 23)

The velocity field is obtained by performing the derivatives of the potential function:

vr =
∂φ

∂r1

, (A 24)

vθ =
1

r1

∂φ

∂θ1

, (A 25)

vω =
1

r sin θ

∂φ

∂ω
, (A 26)

v2
f = v2

r + v2
θ + v2

ω. (A 27)

Based on the analysis of Levich (1948), to obtain the drag force the following
surface integral has to be calculated:

FD · U = −μ

∫
V

Δ(uf uf )dV = −μ

∫
A

∂u2
f

∂xj

nj dA, (A 28)

where U is the bubble velocity.
The dimensionless drag force or drag coefficient, CD , is normalized by

CDLevich =48/Re to obtain

C∗
D =

CD

CDLevich

= 4
(
B1

1

)2
+ 24

(
B2

1

)2
+ 16

(
B1

2

)2
s8 + 128B1

2B
2
2 s

9 + · · · . (A 29)

For the special case of a single bubble, B1 = 0.5, s = 0 and Bi
2,3 = 0; ∀i, the result of

Levich is recovered.
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Figure 13. Infinite array of spheres. The one in the origin is number 0, and increasing
positive and negative indexes appear to the right and left respectively.

The expression (A 29) can be expanded in a Taylor series as a function of s to
obtain

C∗
D = 1 + 2s3 +

17

8
s6 + O(s8) + · · · . (A 30)

Equation (A 30) can be compared with the result obtained by Kok (1993) for the
drag in the case of two bubbles side-by-side in potential flow as:

CD

CDLevich

= 1 + s3 +
3

4
s6 + O(s9) + · · · . (A 31)

Interestingly, the leading order term is exactly twice that of the bubble pair case.
The validity of this expression is expected to improve as s → 0. Although (A 30) may
not be a good approximation for s → 0.5, expression (A 29) can be used, since the
values for B

j
i can be calculated numerically for any i, j . Therefore, it is possible, in

principle, to improve the precision of (A 30).

A. 3. Infinite array of spheres aligned perpendicular to the flow

The generalization to consider an infinite set of horizontally aligned bubbles is
straightforward. Let us consider the same geometry as in the previous case, being the
centre bubble indexed with the number zero, the next bubble to the right would be
bubble one, the one to the left being bubble minus one, etc., as is shown in figure 13.

The procedure is the same as in the previous case, starting from a potential of the
same form, with spherical harmonics centred at each bubble:

φ = Ua

∞∑
n=1

{ ∞∑
k=1

Bk
n

(
a

rk

)n+1

P 1
n (cos θ1)

}
cosω, (A 32)

where the index k represents the corresponding image sphere, having a spherical
harmonic of order n associated with it.

It is possible to obtain the equations for the corresponding constants at bubble i:

−Bi
n =

1

2
δ1n − n

n + 1

∑
k �=i

∞∑
q=1

(
n + q

n + 1

)
sq+n+1

Bk
q

|i − k|n+q+1
ξik, (A 33)

where

ξik =

{
(−1)n+1, k < i,

(−1)q+1, k > i.
(A 34)
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This is, again, a linear set of (n × q) equations with the same number of unknowns.
The velocity field resulting from this solution has two proper planes of symmetry at
each side of the central bubble (i =0). If the calculation is truncated to a reasonable
number of lateral bubbles, such planes of symmetry would be equivalent to plane
walls. The three bubbles problem of the previous section is the case of having only
the bubbles −1, 0 and 1, which can be recovered by direct substitution in (A 33).
Note that if an infinite arrangement of dipoles is considered, the additive effect on
the drag would give 1 + 2s3(1 + 1/23 + 1/33 + 1/43 + · · ·). Therefore, the confinement
correction on the drag force would be

f (s) = 1 + 2ζ (3)s3 + · · · = 1 + 2.4s3 + · · · , (A 35)

where ζ is the Riemann Zeta-function.
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